

SCRIPT REFERENCE

UBot Studio Version 4

The Text Functions

Spin

This function will spin whatever spin-ready content you place inside it. The content can

be typed directly into the spin function, or the content can be called using another

function like the list item functions. You can also insert a variable from a UI text box or

a UI block text command to spin whatever you type into the UIs.

Spin ready sentenced look like the following sentence:

UBot makes working {a breeze| more efficient| less time consuming}

This means that we want the sentence to be finished with either “a breeze”, “more

efficient”, or “less consuming”.

Let’s drag the field we want to fill with our spun sentence into the scripting area. After

the type text command appears, go under your text functions and drag the Spin

function into the type text command.

Type your spin ready content into the spin function. Click ok when you’re done editing.

Each time you run your script, the field will be filled with a spun version of the

sentence with a random ending.

To fill the same field with spin ready content from a file, simply replace the spin ready

sentence in the spin function with the read file function, found under the Variable

functions. Browse for the file that contains your spin ready content. Once you’ve found

the file, click ok on all commands and functions to exit editing.

Once you run the script, the field will be filled with the spun version of the contents of

the file.

To spin content from a UI text box or a UI block text command, insert the variable for

the UI into the spin function.

New Line

This function will insert a new line where ever you place it. It is akin to pressing the

enter key on your keyboard to create a new line.

A simple demonstration can be shown through the set and the UI stat monitor

commands.

Let’s say we want to set account data to a variable, and then watch that variable with

the UI stat monitor command. Notice that when we do that, the credentials are all

clutter together.

What if we could insert a new line between the username and the password to help

organize the information?

Let’s do just that. Right click the set command and click “edit”. Remove the two

account data commands. We are going to start over. Go under the account functions,

and select the account data function. Select the username option in the drop down

menu within the account data function.

Go to the Text function and select the new line function. Drag it next to the first

account data function. Now go back to the Account Functions and select another

account data function for the password. Select “password” from the drop down menu

within the account data function. Click ok on all functions and commands to exit the

editing mode.

When we run the script, notice that a newline has been inserted between the username

and password.

This demonstrates that if you need a new line between two pieces of information, then

you can use the $newline function to create a new line between those pieces of

information.

Nothing

This function Returns an empty value. This is a great function to use when cleaning up

scraped data when used in conjunction with the $replace function.

(See the $replace reference below for an example of this).

Replace

Returns a piece of text modified from an original by replacing a piece of it with

another. For example, if you started with the original text "I like UBot Studio", and you

replaced "Like" with "Love", the result would be "I love UBot Studio".

The simplest way to demonstrate this function is to set a variable with the text “I like

UBot Studio”.

To replace the text we will re-set the variable using the $replace function:

1) Re-set the variable #mytext using $replace as the content. The three labeled fieldss

(as seen in the image) are original text = #mytext, search for = “like” and replace with

= “Love”. Add a load html command to see the results.

2) The results show the new text after the replace has taken place.

As promised in the $nothing function reference, you can use this same example except

instead of using “Love” in the replace labeled field, use $nothing instead and the result

will be “I UBot Studio”.

Find regular expression

Find regular expression allows users to conduct specific searches on text strings using

regular expressions. This function is used for lists, variables, or whatever piece of

information you are trying to scrape. In our examples, we have created a list of random

numbers and saved them to a list in a .txt file.

Next, we are going to write a simple regular expression code to find all the numbers

that start with the numbers between the numbers [2-3]. The numbers should also end

with the numbers between [0-6].

Here is our regular expression for that criteria:

[2-3]...[0-6]

We are going to display the numbers that meet that criteria on the UI of our bot. We

have a set command set the find regular expression function, which will analyze the

numbers based on our regular expression criteria. We drag in the UI stat monitor

command to display the variable we set the regular expression to.

Under “Text” in the Find regular expression function will go the item you are trying to

analyze with the regular expression. Under “Expression” will go your regular

expression, in this case:

[2-3]...[0-6]

Here is our script set up to do just that:

When we run the script, notice that the numbers that numbers that start with the

numbers between 2-3 and ends with the numbers between 0-6 are displayed on our

UI.

Replace Regular Expression

This allows users to find a specific element within a list or a simple word and replace

the item using regular expression. This function works just like the find regular

expression function. We can take a look at the last example. The only thing we would

need to change in the previous example is the section within the code where the find

regular expression function is located within the set command. In the Pattern Text field

for the replace regular expression command, we will use the same regular expression

we used in the previous example. In the field labeled Replace Text will go whatever

you are trying to replace the items that meet the regular expression criteria with. In

this case, we will replace the items with the word “REMOVED”. In the field labeled

original text will go the read file function with the file that contains the numbers we

will be filtering.

So this is the only change we will see in the script:

When the script is run, the numbers that meet the regular expression criteria will be

replace with the word “REMOVED”:

Change Text Casing

This function changes all text in a string to uppercase, lowercase, or proper case.

You can turn any text item you place into the field labeled “Text to Change” in the

function to uppercase, lowercase or proper case. It can be a list item from a list or

simply a string you are trying to fill a field with. Let’s use the set up from our last

example for the replace regular expression function to demonstrate this function.

Simply edit the set command, and replace the replace regular expression function with

the change text casing function. Insert a read file function from under the variable

functions, and choose the file that contains a few simply words, as seen below:

Let’s choose the “Upper Case” option from the drop down menu within the function

labeled “Casing”.

Click ok on all functions and commands to finish editing. This is the set up we have

after we’re done adding the function and browsing for our file:

When we run the script, the items in our file are displayed on the UI in Upper case text

casing (meaning they are all in CAPS):

Now let’s edit the set command, right click to edit the change text casing function.

Let’s change the option under the drop down menu labeled “Casing” to Lower Case.

Notice that all the items in the file have been changed to lower case. Now let’s change

the option to “Proper Case” and see what happens to the items:

Notice that all the items displayed on the UI are now in Proper Casing, or camel casing.

Trim

This function moves any leading or trailing blank spaces from a string.

It can be used the same way you would use the other two functions, except it removes

extra spaces in a list item. In this example, I am trying to post a string that has a large

amount of space preceding one of the words and after the first word. With the trim

function, we are able to remove the blank space before the string.

Notice that the spaces before the word “UBot” and before the word “Studio” has all

been removed as they were displayed on the UI.

Substring

This returns a new string that is a substring of an original string. The substring begins

at a given starting point and extends up to the given length. Again, this function can

be used the way that the other functions can be used, except this finds the determined

subtext of a string. Let’s use the same set command/ui stat monitor set up from

before. After you drag the substring function into the set command, you will be asked

to determine where the subtext starts and what the total length of the subtext is within

the string.

Starting point refers to where your substring begins. In this case, our substring, which

is the word “Studio”, begins after the word “UBot”. There are 4 letters in UBot, so the

starting point is 4.

Number of Characters is referring to how long the substring you are trying to get is. In

this case, Studio is 6 letters long. However, there is one more added to it to count the

space that comes before the first letter of the word.

When you run your script, the word “Studio” is displayed on the UI of the script.

Random text

The function generates a random alpha-numeric string of user defined length,

including upper and lowercase letters. This function will fill a field with a bunch of

random text. It is usually used as space filler.

Using our last example with the set command and the UI stat monitor, replace the

substring function with the random text function. A field will appear within the

function asking how long you want the random text to be. Let’s choose 5 in this

example. Click ok on all functions and commands. Run the script. Our random text is

displayed on the UI.

Our random text is 6C8fP.

So what if we want to combine this function with another function, such as the account

data function set to “Firstname”?

Right click and select edit on your set command. Go under account functions and drag

the account data function in front of the random text function. Select “Firstname” from

the drop down menu that appears after dragging in the account data function. Click ok

on all commands and functions to exit editing. Run the script.

The random text function plus the generated account data function creates the item

displayed on the UI.

Pad text

This function adds a fixed number of characters to the left or right side of a string

based on the total length of the string selected.

In this example, we are padding the text “Apple Pies”. Let’s use the set command and

Ui stat monitor command example. Place the pad text function inside the set command

under value. Three fields will appear within the function.

Original Text: The text you want to pad. Can be written directly into the field or be a

list item.

Padding Character: The character you want to pad the original text with.

New length after Padding: How long the original text will be after padding. To calculate

this, simply drag the eval function into this field. When the field labeled “Expression”

appears in the Eval function, drag in the text length function. A field will appear within

that function. Type in the original text again, and click ok on the function. After

clicking ok, type + 1 next to the text length function. Click ok for the eval function.

 The number 1 determines how many times the original text will be padded with the

padding Character. Scroll down in the pad text function. Under drop down menu

labeled “Side to Pad”, choose right or left. If you choose left, the Padding Character will

pad the left side of your Original text. If you choose right, it will pad the right side of

your original text. Click ok on all functions and commands. Let us choose right for this

example.

Notice the add function that appeared in the eval function. Since you are adding the

text length of the original text plus 1, an add function appears to encase the process.

If you were subtracting, a subtract function would appear instead.

Click ok for all commands and functions, and run the script.

Our original text, “Apple Pie” has been padded once by the character “S” on the right

side, to create the phrase “Apples pies”

We can pad the text with many more “s”’s by increasing the number in the right side

value for the eval function, under $add function.

Text length

This function returns the total length of some text. Please see the previous example for

pad text, where text length is used.

You can fill a field with the function to find the text length of either an account

Function (username, first name, password, etc), a variable, a list item or a piece of text.

In this example, we have set the text length function to a variable, and displayed the

amount on the UI.

The text length of the phrase “Example Text” is 12.

Insert text

Inserts a substring into a string based on the specified position. In this example, we

are trying to insert the word “Succulent” at position 0 on the phrase “Apple Pies”, so we

can try to create the phrase: “Succulent Apples Pies”

Original Text: Where our phrase “Apple Pies” will go

Text to Insert: Where the item you are trying to insert will go.

Position: Where exactly you want the item inserted.

A space is added after the word “Succulent” to avoid the phrase coming out like:

SucculentApple Pies

Click ok on all commands and functions (starting with the functions) and run your

script. This is what we see displayed on our UI:

Change the position number to see how that affects where the “Text to Insert” goes in

the original text.

Find index

This function finds the index of any subtext within a text string. This function is

perfect for use within the insert text function. You can find the index of an element

and then use that index number to determine where you want a new item inserted. In

this example, we would like to insert the name “Manning” into the item “Jayne333”

between Jayne and *333. The first thing we did was find the index of where we would

like to insert the word and set that to a variable named “username”. So we are finding

the index of 333 within Jayne 333. The index is 5.

So then we move on to display the result on the UI. You will go under text functions

and choose the Insert Text function to insert into another set command.

Original Text: Where Jayne333 will go

Text to Insert: We are trying to insert the word “Manning”

Position: The position will be the variable with the index set to it.

After running the script, “Jayne333” turns into “JayneManning333”.

Append line to text

This function appends a new line to a piece of text.

It simply adds one piece of text to another. So, in this example, we have a sentence

that is being spun. We are then going to append the spun content to a first name

generated with the account data function.

When you drag in the append line to text function into the set command, you will

notice there are two columns:

Original Text: The text you are trying to append another text to. This is where your

spin function will go.

Text to Append: Which refers to the text you are trying to append into the original

text. This is where the username function will go.

Click ok on all functions and commands after setting up them up and inserting the

appropriate values. Once you run your script, the UI area of your script will be filled

with the resulting appended text.

